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The Dipole Allowed 

Decays of n=2 States



Time-Dependent Perturbation Theory: Solved Problems
1. Consider a hydrogen atom in a time-dependent electric field E = E(t) k. Calculate all ten of
the dipole matrix elements between the n = 1 ground state and the four n = 2 excited states.
Also calculate the five expectation values of the dipole operator for these five states. Note that
“calculate” here means show that fourteen out of the fifteen are zero with a clever argument, so
that you only need to do one integral!

First, do the calculation using the even-odd symmetry with respect to z of the three ingredi-
ents, namely: (1) the wavefunctions, (2) the dipole term, and (3) the limits of integration. Show
which matrix elements must vanish and which ones can survive:

(a) Write down the n = 1 ground state wavefunction, and the four n = 2 excited state wave-
functions in spherical coordinates:

ˆnlm(r) =< r; µ; ` | n; l; m >= Rnl(r) Ylm(µ; `):

(b) Show that these five wavefunctions squared | ˆnlm(x; y; z) |2 are all even functions of z.

(c) Use your result from part b to show that the matrix elements

< n; l; m | z | n; l; m >=
∫ ∞

−∞
z | ˆ(x; y; z) |2 dx dy dz = 0:

(d) Show that four of these five states are even functions of z, namely that ˆ100, ˆ200, ˆ211 and
ˆ21−1 are all even functions of z, and that ˆ210 is an odd function of z.

(e) Use your result from part d to show that all the following dipole matrix elements between
pairs of the even states are zero, i.e., show that

< 1; 0; 0 | z | 2; 0; 0 > = < 1; 0; 0 | z | 2; 1; 1 > = < 1; 0; 0 | z | 2; 1;−1 > = 0;

< 1; 0; 0 | z | 2; 1; 0 > = < 2; 1; 1 | z | 2; 1; 0 > = < 2; 1;−1 | z | 2; 1; 0 > = 0;

< 2; 0; 0 | z | 2; 1; 1 > = < 2; 0; 0 | z | 2; 1; −1 > = < 2; 1; 1 | z | 2; 1;−1 > = 0:

(f) Use the even and odd argument in z to explain why the only non-zero matrix elements are

< 1; 0; 0 | z | 2; 1; 0 > =
∫ ∞

−∞
ˆ∗

200(x; y; z) z ˆ210(x; y; z) dx dy dz;

and

< 2; 0; 0 | z | 2; 1; 0 > =
∫ ∞

−∞
ˆ∗

100(x; y; z) z ˆ210(x; y; z) dx dy dz:
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(g) Put in the wavefunctions and calculate the two non-zero H1 = −eEz integrals from part f,
i.e., do the integrals. For example, calculate

< 1; 0; 0 | H1 | 2; 1; 0 >= −eE
1√
…a3

1√
32…a3

1
a

∫ ∞

−∞
e−r=a e−r=2a z d3r

or

< 1; 0; 0 | z | 2; 1; 0 >= −eE
1√
…a3

1√
32…a3

1
a

∫ ∞

−∞
e−r=a e−r=2a (r cos µ) sin µ dµ d` r2 dr:

You should find that

< 1; 0; 0 | H1 | 2; 1; 0 >= −(28=35
√

2) eEa ' −0:7449 eEa;

and that

< 2; 0; 0 | z | 2; 1; 0 >= −3 eEa:

Second, do the calculation using the orthonormality of the spherical harmonics and the addition
rules for angular momentum:

(h) First show that z = r cos µ ' Y10(µ; `). Then use the angular momentum addition rules to
add Y10 to one (or the other) Ylm under the integral. Finally, use the orthonormality of the
Ylm’s to show that all the matrix elements except < 1; 0; 0 | z | 2; 1; 0 > must vanish.

(i) Which method do you prefer? Explain why you prefer it! It is very important that you fully
understand both methods: they are both extremely powerful and extremely useful!!!

1. The wave function expressed in spherical coordinates is given by

ˆnlm(~r) = <r; µ; `
∣∣n; l;m> Rnl(r)Ylm(µ; `):

Using the functional forms of the Rnls and of the spherical harmonics, we find

ˆ100 = R10Y00 = 2a−3=2e−r=a

(
1
4…

)1=2

=
1√
…

a−3=2e−r=a;

ˆ200 = R20Y00 =
1√
2
a−3=2

(
1 −

r

2a

)
e−r=2a

(
1
4…

)1=2

=
1

2
√

2…
a−3=2

(
1 −

r

2a

)
e−r=2a;
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ˆ210 = R21Y10 =
1√
24

a−3=2
( r

a

)
e−r=2a

(
3
4…

)1=2

cos(µ) =
1

4
√

2…
a−3=2

(r

a

)
e−r=2a cos(µ);

ˆ211 = R21Y11 =
1√
24

a−3=2
(r

a

)
e−r=2a

[
−

(
3
8…

)1=2

sin(µ)ei`

]
= −

1
8
√

…
a−3=2

(r

a

)
e−r=2a sin(µ)ei`;

ˆ21;−1 = R21Y1;−1 =
1√
24

a−3=2
(r

a

)
e−r=2a

(
3
8…

)1=2

sin(µ)e−i` =
1

8
√

…
a−3=2

( r

a

)
e−r=2a sin(µ)e−i`:

1.(b) Remember, an even function is one for which f(−x) = f (x). If there is more than one
independent variable, as we have here, the function may be even with respect to one or more
of the variables. Even with respect to z for the function f(x; y; z) means that f(x; y; −z) =
f (x; y; z). The wave functions are currently in spherical coordinates ˆ(r; µ; `). We need to find
their symmetries in Cartesian coordinates

r =
(
x2 + y2 + z2)1=2

; cos µ =
z

(x2 + y2 + z2)1=2 ; sin µ =

(
x2 + y2

)1=2

(x2 + y2 + z2)1=2 ; and ` = tan−1
(y

x

)
:

We actually only need to do enough examination to determine the symmetry with respect to z
and not a complete change of variables. Using the ˆnlm’s from part a, we find

∣∣ˆ100(x; y; z)
∣∣2 =

1
…

a−3e−2(x2+y2+z2)1=2
=a; where (−z)2 = z2

⇒
∣∣ˆ100(x; y; −z)

∣∣2 =
∣∣ˆ100(x; y; z)

∣∣2 so
∣∣ˆ100

∣∣2 is even wrt z:

∣∣ˆ200(x; y; z)
∣∣2 =

1
8…

a−3

(
1 −

(
x2 + y2 + z2

)1=2

2a

)2

e−(x2+y2+z2)1=2
=a and (−z)2 = z2 in both places

⇒
∣∣ˆ200(x; y; −z)

∣∣2 =
∣∣ˆ200(x; y; z)

∣∣2 so
∣∣ˆ200

∣∣2 is even wrt z:

∣∣ˆ210(x; y; z)
∣∣2 =

1
32…

a−3

((
x2 + y2 + z2

)

a2

)
e−(x2+y2+z2)1=2

=a z2

(x2 + y2 + z2)
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and (−z)2 = z2 in all four places

⇒
∣∣ˆ210(x; y; −z)

∣∣2 =
∣∣ˆ210(x; y; z)

∣∣2 so
∣∣ˆ210

∣∣2 is even wrt z:

∣∣ˆ211(x; y; z)
∣∣2 =

1
64…

a−3

((
x2 + y2 + z2

)

a2

)
e−(x2+y2+z2)1=2

=a x2 + y2

(x2 + y2 + z2)
ei`(x;y)

and (−z)2 = z2 in all three places

⇒
∣∣ˆ211(x; y; −z)

∣∣2 =
∣∣ˆ211(x; y; z)

∣∣2 so
∣∣ˆ211

∣∣2 is even wrt z:

∣∣ˆ21;−1(x; y; z)
∣∣2 =

1
64…

a−3

((
x2 + y2 + z2

)

a2

)
e−(x2+y2+z2)1=2

=a x2 + y2

(x2 + y2 + z2)
e−i`(x;y)

and (−z)2 = z2 in all three places

⇒
∣∣ˆ211(x; y; −z)

∣∣2 =
∣∣ˆ211(x; y; z)

∣∣2 so
∣∣ˆ211

∣∣2 is even wrt z:

1.(c) Here we use the facts that the product of an even function is an odd function, and that
an odd function integrated between symmetric limits is zero. The expectation values of z are
given by

<n; l; m|z|n; l; m> =
∫ ∞

−∞
z
∣∣ˆ(x; y; z)

∣∣2 dx dy dz =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
z
∣∣ˆ(x; y; z)

∣∣2 dz;

but z is an odd function, and all of the
∣∣ˆnlm(x; y; z)

∣∣2 are even functions, so all of the z
∣∣ˆnlm(x; y; z)

∣∣2
are odd functions. The integral with respect to z is between symmetric limits. Therefore

<n; l; m|z|n; l;m> =
(∫ ∞

−∞
dx

∫ ∞

−∞
dy

)
· 0 = 0:

1.(d) Referring to wave functions of part (a) and the Cartesian/spherical relations of part (b),

ˆ100 =
1√
…

a−3=2e−(x2+y2+z2)1=2
=a; and (−z)2 = z2
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⇒ ˆ100(x; y;−z) = ˆ100(x; y; z) so ˆ100 is even wrt z:

ˆ200(x; y; z) =
1

2
√

2…
a−3=2

(
1 −

(
x2 + y2 + z2

)1=2

2a

)
e−(x2+y2+z2)1=2

=2a;

and (−z)2 = z2 in both places

⇒ ˆ200(x; y;−z) = ˆ200(x; y; z) so ˆ200 is even wrt z:

ˆ210 =
1

4
√

2…
a−3=2

((
x2 + y2 + z2

)1=2

a

)
e−(x2+y2+z2)1=2

=2a z

(x2 + y2 + z2)1=2
;

This is an odd function. In the three places where
(
x2 + y2 + z2

)1=2
is substituted for r; (−z)2 =

z2. This portion of the wave function is even. The remaining factor is z, which is an odd
function. The product of an even and an odd function is an odd function

⇒ ˆ210(x; y;−z) = −ˆ210(x; y; z) so ˆ210 is odd wrt z:

ˆ211 = − 1
8
√

…
a−3=2

((
x2 + y2 + z2

)1=2

a

)
e−(x2+y2+z2)1=2

=2a

(
x2 + y2

)1=2

(x2 + y2 + z2)1=2 ei`(x;y);

where (−z)2 = z2 in all three places, and ` = `(x; y) is independent of z,

⇒ ˆ211(x; y;−z) = ˆ211(x; y; z) so ˆ211 is even wrt z:

ˆ21;−1 = −
1

8
√

…
a−3=2

((
x2 + y2 + z2

)1=2

a

)
e−(x2+y2+z2)1=2

=2a

(
x2 + y2

)1=2

(x2 + y2 + z2)1=2 e−i`(x;y);

where (−z)2 = z2 in all three places, and ` = `(x; y) is again independent of z,

⇒ ˆ21;−1(x; y;−z) = ˆ21;−1(x; y; z) so ˆ21;−1 is even wrt z:
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1.(e) From part (d), ˆ100; ˆ200; ˆ211; and ˆ21;−1 are even functions with respect to z. Us-
ing the same argument as in part (c),

<ˆeven wrt z

∣∣z
∣∣ˆeven wrt z > =

∫ ∞

−∞
(ˆeven wrt z)

∗
z (ˆeven wrt z) dx dy dz

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
(ˆeven wrt z)

∗
z (ˆeven wrt z) dz:

Again, z is an odd function. The product of an even and odd function is odd; this odd function
multiplied by another even function yields an odd function overall. The integral with respect to
z is between symmetric limits, and an integral of an odd function between symmetric limits is
zero. Therefore

<1; 0; 0
∣∣z

∣∣2; 0; 0> = <1; 0; 0
∣∣z

∣∣2; 1; 1> = <1; 0; 0
∣∣z

∣∣2; 1; −1> = 0

<2; 0; 0
∣∣z

∣∣2; 1; 1> = <2; 0; 0
∣∣z

∣∣2; 1;−1> = <2; 1; 1
∣∣z

∣∣2; 1; −1> = 0:

1.(f) The remaining matrix elements are given by

<1; 0; 0
∣∣z

∣∣2; 1; 0>; <2; 0; 0
∣∣z

∣∣2; 1; 0>; <2; 1; 1
∣∣z

∣∣2; 1; 0> and <2; 1; −1
∣∣z

∣∣2; 1; 0> :

These integrals all have the form
∫ ∞

−∞ (even function) (odd function) (odd function) with re-
spect to z, which we would expect to be non-zero. We can examine two at once, using z =
r cos µ, and the volume element in spherical coordinates which is dv = r2 sin µdrdµd`,

<2; 1; ±1
∣∣z

∣∣2; 1; 0> =
∫ ∞

−∞

(
∓1
8
√

…
a−3=2

(r

a

)
e−r=2a sin(µ)e±i`

)∗

r cos µ
1

4
√

2…
a−3=2

( r

a

)
e−r=2a cos(µ) dV

=
∓1

32…
√

2
1
a5

∫ ∞

0
dr r5e−r=a

∫ …

0
dµ sin2 µ cos2 µ

∫ 2…

0
d` e∓i`

:

Examining just the azimuthal integral, we find
∫ 2…

0
d` e∓i` =

∫ 2…

0
d` cos ` ∓ i sin`

=
∫ 2…

0
d` cos ` ∓ i

∫ 2…

0
d` sin`

= sin`
∣∣∣
2…

0
± i cos `

∣∣∣
2…

0

= (0 − 0) ± i (1 − 1) = 0;

therefore, the integral over all space will be zero regardless of the values of the radial and polar
integrals, i.e.,

<2; 1; 1
∣∣z

∣∣2; 1; 0> = <2; 1;−1
∣∣z

∣∣2; 1; 0> = 0:
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1.(g) We have been examining expectation values of z because H1 = −eEz, where −eE is a
constant. If the expectation value is non-zero, the value of the integral multiplied by −eE will
express the result in energy units.

There are two remaining integrals. Using z = r cos µ and dV = r2 sin µdrdµd`, the integral

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
∫ ∞

−∞

(
1

2
√

2…
a−3=2

(
1 −

r

2a

)
e−r=2a

)∗

r cos µ
1

4
√

2…
a−3=2

(r

a

)
e−r=2a cos(µ) dV

=
1

16…a4

∫ ∞

0
dr

(
1 −

r

2a

)
r4e−r=a

∫ …

0
dµ cos2 µ sin µ

∫ 2…

0
d`

=
1

16…a4

∫ ∞

0
dr

(
1 −

r

2a

)
r4e−r=a

∫ …

0
dµ cos2 µ sin µ [2…]

=
1

8a4

∫ ∞

0
dr

(
1 − r

2a

)
r4e−r=a

[
−cos3 µ

3

]…

0

=
1

8a4

∫ ∞

0
dr

(
1 − r

2a

)
r4e−r=a

[
2
3

]

=
1

12a4

∫ ∞

0
dr

(
1 − r

2a

)
r4e−r=a

=
1

12a4

[∫ ∞

0
dr r4e−r=a − 1

2a

∫ ∞

0
dr r5e−r=a

]
:

These integrals are evaluated using

∫ ∞

0
xne−„x dx = n! „−n−1; Re „ > 0;

with „ = 1=a for both, and with n = 4 and 5 respectively, so we find

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
1

12a4

[
4!

(
1
a

)−4−1

− 1
2a

5!
(

1
a

)−5−1
]

=
1

12a4

[
4 · 3 · 2
(1=a)5

− 1
2a

(
5 · 4 · 3 · 2

(1=a)6

)]

=
1

12a4

[
24a5 −

1
2a

120a6
]

=
1

12a4

[
24a5 − 60a5]

=
1

12a4

(
−36a5) = −3a:

Since H1 = −eEz, we find

⇒ <2; 0; 0
∣∣z

∣∣2; 1; 0> = 3eEa:
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The last integral is <1; 0; 0
∣∣z

∣∣2; 1; 0> which in energy units is given by

<1; 0; 0
∣∣H1

∣∣2; 1; 0> = <1; 0; 0
∣∣ − eEz

∣∣2; 1; 0>

= −eE <1; 0; 0
∣∣z

∣∣2; 1; 0>

= −eE

∫ ∞

−∞
(ˆ100)

∗
z ˆ210 dV

= −eE

∫ ∞

−∞

1√
…

a−3=2e−r=a z
1

4
√

2…
a−3=2

( r

a

)
e−r=2a cos(µ) dV

= −
eE

4…
√

2a4

∫ ∞

−∞
re−3r=2a z cos(µ) dV:

Using z = r cos µ and dV = r2 sin µdrdµd`, we find

<1; 0; 0
∣∣H1

∣∣2; 1; 0> = −
eE

4…
√

2a4

∫ ∞

−∞
r4e−3r=2a cos2 µ sin µ dr dµ d`

= − eE

4…
√

2a4

∫ ∞

0
dr r4e−3r=2a

∫ …

0
dµ cos2 µ sin µ

∫ 2…

0
d`

= −
eE

4…
√

2a4

∫ ∞

0
dr r4e−3r=2a

∫ …

0
dµ cos2 µ sin µ(2…)

= −
eE

2
√

2a4

∫ ∞

0
dr r4e−3r=2a

[
−

cos3 µ

3

]…

0

= −
eE

2
√

2a4

∫ ∞

0
dr r4e−3r=2a

[
−

−1 − 1
3

]…

0

= − eE

3
√

2a4

∫ ∞

0
dr r4e−3r=2a:

As before, using ∫ ∞

0
xne−„x dx = n!„−n−1; Re „ > 0;

with „ = 3=2a and n = 4 we find

<1; 0; 0
∣∣H1

∣∣2; 1; 0> = −
eE

3
√

2a4
4!

(
3
2a

)−5

= − eE

3
√

2a4

4 · 3 · 2(2a)5

35

= −
eE

3
√

2a4

3 · 23 · 25 · a5

35

⇒ <1; 0; 0
∣∣H1

∣∣2; 1; 0> = − eE√
2

28 · a

35 = −0:7449eEa:
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1.(h) The wave functions under consideration are ˆnlm = Rnl(r)Ylm(µ; `), which are explicitly

ˆ100 = R10Y00; ˆ200 = R20Y00; ˆ210 = R21Y10; ˆ211 = R21Y11; ˆ21;−1 = R21Y1;−1:

The integrals for the expectation values of z are given by

<n; l;m
∣∣z

∣∣n′; l′;m′ > = <n; l; m
∣∣r cos µ

∣∣n′; l′;m′ >

=
∫ ∞

−∞
ˆ∗

nlm r cos µ ˆn′l′m′ dV

=
∫ ∞

−∞
R∗

nlY
∗
lm r cos µ Rn′l′Yl′m′ dV

=
∫ ∞

0
R∗

nlRn′l′ r3 dr

∫
Y ∗

lm cos µ Yl′m′ dΩ;

where the factor of r2 in the radial integral comes from the volume element. The angular mo-
mentum addition rules and the integration can be summarized by

∫
Y ∗

lm cos µ Yl′m′ dΩ;=
[
(l′ − m′ + 1)(l′ + m′ + 1)

(2l′ + 1)(2l′ + 3)

]1=2

–mm′–l;l′+1+
[

l′ − m′)(l′ + m′)
(2l′ − 1)(2l′ + 1)

]1=2

–mm′–l;l′−1:

For this integral to be non-zero, l′ must differ from l by ±1. This means that

<1; 0; 0
∣∣z

∣∣1; 0; 0> = <2; 0; 0
∣∣z

∣∣2; 0; 0> = <2; 1; 0
∣∣z

∣∣2; 1; 0> = <2; 1; 1
∣∣z

∣∣2; 1; 1>=<2; 1; −1
∣∣z

∣∣2; 1;−1>

= <1; 0; 0
∣∣z

∣∣2; 0; 0> = <2; 1; 0
∣∣z

∣∣2; 1; 1> = <2; 1; 0
∣∣z

∣∣2; 1; −1> = <2; 1; 1
∣∣z

∣∣2; 1;−1> = 0:

Also, m must equal m′ for the integral to be non-zero, so

<1; 0; 0
∣∣z

∣∣2; 1; 1> = <1; 0; 0
∣∣z

∣∣2; 1;−1> = <2; 0; 0
∣∣z

∣∣2; 1; 1> = <2; 0; 0
∣∣z

∣∣2; 1; −1> = 0:

Only < 1; 0; 0
∣∣z

∣∣2; 1; 0 > and < 2; 0; 0
∣∣z

∣∣2; 1; 0 > remain as non-zero possibilities. Knowing that
z = r cos µ ∼ Y10, we can see that these two integrals have the form

∫
Y00Y10Y10 dΩ:

Parity conservation in angle space can be summarized by l1+l2+l3+m1+m2+m3 = even integer.
For our two integrals, this condition is satisfied for the integer 2. For both <1; 0; 0

∣∣z
∣∣2; 1; 0> and

<2; 0; 0
∣∣z

∣∣2; 1; 0>, the integral over solid angle can now be evaluated using

∫
Y ∗

00 cos µ Y10 dΩ; =
[
(1 − 0 + 1)(1 + 0 + 1)
(2 · 1 + 1)(2 · 1 + 3)

]1=2

–00–0;1+1 +
[

(1 − 0)(1 + 0)
(2 · 1 − 1)(2 · 1 + 1)

]1=2

–00–0;1−1:

Here, the first expression on the right side of the equation will be zero because the indices on the
second Kronecker – are not identical. Both sets of indices on the Kronecker – of second expres-
sion on the right are identical, so we find

∫
Y ∗

00 cos µ Y10 dΩ;=
1√
3
:

9



Next, we will evaluate the radial integrals using this angular factor. We find

<1; 0; 0
∣∣z

∣∣2; 1; 0> =
1√
3

∫ ∞

0
R10 r R21 r2 dr

=
1√
3

∫ ∞

0

(
2a−3=2e−r=a

) (
1√
24

a−3=2 r

a
e−r=2a

)
r3 dr

=
1

3
√

2a4

∫ ∞

0
r4e−3r=2adr

This integral can be evaluated using

∫ ∞

0
xne−„x dx = n! „−n−1; Re „ > 0;

with „ = 3=2a and n = 4, so we find

<1; 0; 0
∣∣z

∣∣2; 1; 0> =
1

3
√

2a4
4 · 3 · 2

(
3
2a

)−5

=
1

3
√

2a4

3 · 23 · 25 · a5

35

⇒ <1; 0; 0
∣∣z

∣∣2; 1; 0> =
28

√
2 · 35

a

⇒ <1; 0; 0
∣∣H1

∣∣2; 1; 0> = −eE
28

√
2 · 35

a = −0:7449eEa; which is the same as part (g):

The other integral is given by

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
1√
3

∫ ∞

0
R20 r R21 r2 dr

=
1√
3

∫ ∞

0

(
1√
2
a−3=2

(
1 −

r

2a

)
e−r=2a

)(
1√
24

a−3=2 r

a
e−r=2a

)
r3 dr

=
1√

3
√

2
√

24a4

∫ ∞

0

(
1 −

r

2a

)
r4e−r=a dr

=
1

12a4

∫ ∞

0
r4e−r=a dr −

1
24a5

∫ ∞

0
r5e−r=a dr:

We can evaluate this integral using the same procedure, with „ = 1=a and n = 4 and 5 respec-
tively. We find

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
1

12a4

4 · 3 · 2
(1=a)5

− 1
24a5

5 · 4 · 3 · 2
(1=a)6

=
24a5

12a4 − 120a6

24a4

10



⇒ <2; 0; 0
∣∣z

∣∣2; 1; 0> = 2a − 5a = −3a; which is the same as part (g)

and <2; 0; 0
∣∣H1

∣∣2; 1; 0> = 3eEa:

1.(i) : : :Wow! That spherical harmonic stuff does seem to be a lot less work: : :.
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The Dipole Allowed 

Decays of |3 0 0>



4. An electron in the n = 3, l = 0, m = 0 state of hydrogen decays by a sequence of electric dipole transi-
tions to the ground state. The selection rules for electric dipole transitions are that ∆m = ±1 or 0 and
that ∆l = ±1. In this problem you are only asked to consider the transitions where n changes, so the
nine possible transitions are:

| 3; 0; 0 > ⇒ | 2; 1; 1 >

| 3; 0; 0 > ⇒ | 2; 1; 0 >

| 3; 0; 0 > ⇒ | 2; 1; −1 >

| 3; 0; 0 > ⇒ | 2; 0; 0 >

| 3; 0; 0 > ⇒ | 1; 0; 0 >

| 2; 1; 1 > ⇒ | 1; 0; 0 >

| 2; 1; 0 > ⇒ | 1; 0; 0 >

| 2; 1;−1 > ⇒ | 1; 0; 0 >

| 2; 0; 0 > ⇒ | 1; 0; 0 >

(a) Which of these nine transitions obey the ∆m = ±1 or 0 dipole selection rule?

(b) Which of these nine transitions obey the ∆l = ±1 dipole selection rule?

(c) The dipole allowed transitions must obey both rules. Which six of the nine transitions are dipole al-
lowed?

(d) List all of the allowed dipole transition routes, which pass through the n = 2 states, from the | 3; 0; 0 >
state to the | 1; 0; 0 > state, i.e., list the three dipole allowed routes which have the form:

| 3; 0; 0 > ⇒ | 2; ?; ? > ⇒ | 1; 0; 0 > :

(e) Write down the integral for the dipole matrix element from the | 3; 0; 0 > state to the | 2; 1; 0 >
state. Show that this matrix element only depends on the z component of the r operator, i:e:, show
that

< 2; 1; 0 | r | 3; 0; 0 > = < 2; 1; 0 | z | 3; 0; 0 > k:

(f) Do the integral that you wrote down in part e. You should find < 2; 1; 0 | z | 3; 0; 0 > =

[ √
3
4…

√
1
24

a− 3
2

] [ √
1
4…

2√
27

a− 3
2

] ∫ ∞

0

[
r cos (µ) exp

(
−r

2a

) (
1 −

2r

3a
+

2r2

27a2

)]

27



×
[

r cos (µ) exp
(

−r

3a

)]
r2 dr sin µ dµ d`

so

< 2; 1; 0 | z | 3; 0; 0 > = −
[

28 34

56
√

6

]
a:

(g) Write down the integrals for the dipole matrix elements from the | 3; 0; 0 > state to the | 2; 1;±1 >
states. Show that these matrix elements only depend on the x and y components of the r operator,
i:e:, show that

< 2; 1;±1 | r | 3; 0; 0 > = < 2; 1;±1 | x | 3; 0; 0 > i + < 2; 1;±1 | y | 3; 0; 0 > j:

(h) Now show that these x and y matrix elements are almost identical, i.e., show that

± < 2; 1;±1 | x | 3; 0; 0 > = i < 2; 1;±1 | y | 3; 0; 0 > :

Explain how you can use this to make your life simpler, i.e., explain why you can just calculate one inte-
gral and still obtain all four matrix elements!!!

(i) Do the x integral you wrote down in part g. You should find < 2; 1; ±1 | x | 3; 0; 0 > =

[ √
3
8…

√
1
24

a− 3
2

] [ √
1
4…

2√
27

a− 3
2

] ∫ ∞

0

[
r sin (µ) exp (±i`) exp

(
−r

2a

) (
1 − 2r

3a
+

2r2

27a2

)]

×
[

r cos (µ) exp
(

−r

3a

)]
r2 dr sin µ dµ d`

so

< 2; 1; ±1 | x | 3; 0; 0 > = ±
[

−
27 34

56
√

3

]
a:

(j) According to Fermi’s Golden Rule Number 2, the electric dipole transition rates are proportional to
the squares of the matrix elements. Calculate the squares of these matrix elements and show that the
two of the three decay routes have identical transition rates and that the third route has twice the
transition rate,i.e., show that

1
2

| < 2; 1; 0 | r | 3; 0; 0 > |2 = | < 2; 1; 1 | r | 3; 0; 0 > |2 = | < 2; 1; −1 | r | 3; 0; 0 > |2 :

28



So, one half go by one decay route, and one quarter each go by the other two decay routes.

(k) Now the spontaneous emission rates via these three routes are given by

A =
!3 | < r > |2

3 … †0 h̄ c3 ;

so the the total decay rate is given by

R = 3 A = 3
(

e2

3 … †0 h̄ c3

) (
−5 E1

36 h̄

)3 (
215 37

512

)
a2 = 6:32 × 106 seconds−1;

and the lifetime of the | 3; 0; 0 > state is given by ¿ = (1=R) = 1:58 × 10−7 seconds.

4.(a) For an electron transition between the n = 3; l = 0;m = 0 and ground states, given that it can but
does not have to go to the ground state directly, there are nine possible transitions.

All nine possible transitions obey the ∆m = ±1 or 0 selection rule:
The nine possible transitions are

|3; 0; 0> → |2; 1; 1>

|3; 0; 0> → |2; 1; 0>

|3; 0; 0> → |2; 1; −1>

|3; 0; 0> → |2; 0; 0>

|3; 0; 0> → |1; 0; 0>

|2; 1; 1> → |1; 0; 0>

|2; 1; 0> → |1; 0; 0>

|2; 1; −1> → |1; 0; 0>

|2; 0; 0> → |1; 0; 0>
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4.(b)

Six of these these transitions obey the ∆l = ±1 selection rule:
These six allowed transitions are

|3; 0; 0> → |2; 1; 1>

|3; 0; 0> → |2; 1; 0>

|3; 0; 0> → |2; 1; −1>

|2; 1; 1> → |1; 0; 0>

|2; 1; 0> → |1; 0; 0>

|2; 1; −1> → |1; 0; 0>

4.(c)

The six transitions listed in part b obey both dipole transition rules:

4.(d)

The three allowed transitions via an intermediate state are

|3; 0; 0> → |2; 1; 1> → |1; 0; 0>

|3; 0; 0> → |2; 1; 0> → |1; 0; 0>

|3; 0; 0> → |2; 1;−1> → |1; 0; 0>

4.(e) The transition
<2; 1; 0

∣∣~r
∣∣3; 0; 0> = <ˆ210

∣∣~r
∣∣ˆ300 >

= <R21Y10
∣∣~r

∣∣R30Y00 >

=
∫

R21Y10 ~r R30Y00 dV

=
∫

R21R30r
2 dr

∫
Y10 ~r Y00 dΩ

:

The angular part of this equation is

∫ (
3
4…

)1=2

cos µ ~r

(
1
4…

)1=2

dΩ =
√

3
4…

∫
~r cos µ dΩ:
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Remember ~z = ~r cos µ = zk̂ so generalizing back into Dirac notation,

<2; 1; 0
∣∣~r

∣∣3; 0; 0> = <2; 1; 0
∣∣ z

∣∣3; 0; 0> k̂:

4.(f) Evaluating the integral by inserting the appropriate radial and angular functions, we find that the
matrix element we seek < 2; 1; 0

∣∣ z
∣∣3; 0; 0> is equal to the integral

I =
∫ ∞

−∞

(
1√
24

a−3=2 r

a
e−r=2a

(
3
4…

)1=2

cos µ

)∗ (
z

) 2√
27

a−3=2
(

1 − 2r

3a
+

2
27

r2

a2

)
e−r=3a

(
1
4…

)1=2

dV:

Factoring out the constants and simplifying, we find:

I =
1√
24

2√
27

1
a4

(
3
4…

)1=2 (
1
4…

)1=2 ∫ ∞

−∞
r e−r=2a cos µ

(
r cos µ

) (
1 −

2r

3a
+

2
27

r2

a2

)
e−r=3a dV

=
1

12…
√

6a4

∫ ∞

−∞
r2 cos2 µ

(
1 − 2r

3a
+

2
27

r2

a2

)
e−5r=6a dV

And by doing the angular integrals, we can reduce the problem to the radial integrals that we must do

I =
1

12…
√

6a4

∫ ∞

0
r4e−5r=6a

(
1 −

2r
3a

+
2
27

r2

a2

)
dr

∫ …

0
cos2 µ sin µ dµ

∫ 2…

0
d`:

=
1

12…
√

6a4

∫ ∞

0
r4e−5r=6a

(
1 − 2r

3a
+

2
27

r2

a2

)
dr

∫ …

0
cos2 µ sin µ dµ (2…)

=
1

6
√

6a4

∫ ∞

0

(
r4e−5r=6a −

2
3a

r5e−5r=6a +
2

27a2 r6e−5r=6a

)
dr

(
cos3 µ

3

∣∣∣
…

0

)

=
1

6
√

6a4

∫ ∞

0

(
r4e−5r=6a −

2
3a

r5e−5r=6a +
2

27a2 r6e−5r=6a

)
dr

(
−1 − 1

3

)

= − 1
9
√

6a4

(∫ ∞

0
r4e−5r=6a dr − 2

3a

∫ ∞

0
r5e−5r=6a dr +

2
27a2

∫ ∞

0
r6e−5r=6a dr

)
: (1)

We can evaluate all three radial integrals using form 3.381.4 on page 317 of Gradshteyn and Ryzhik, which
is ∫ ∞

0
x”−1e−„x dx =

1
„”

Γ(”); Re „ > 0; Re ” > 0:

For the first integral, ” = 5 and „ = 5=6a, so
∫ ∞

0
r4e−5r=6a dr =

1
(5=6a)5

Γ(5) =
65a5

55 4 · 3 · 2 = 24
65a5

55 :

For the second integral, ” = 6 and „ = 5=6a, so

2
3a

∫ ∞

0
r5e−5r=6a dr =

1
(5=6a)6

Γ(6) =
2
3a

66a6

56 5 · 4 · 3 · 2 = 80
66a5

56 :
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For the third integral, ” = 7 and „ = 5=6a, so

2
27a2

∫ ∞

0
r6e−5r=6a dr =

1
(5=6a)7

Γ(7) =
2

27a2

67a7

57 6 · 5 · 4 · 3 · 2 =
160
3

67a5

57 :

Substituting these into equation (1),

<2; 1; 0
∣∣ z

∣∣3; 0; 0> = −
1

9
√

6a4
a5

(
24

65

55 − 80
66

56 +
160
3

67

57

)

= − a

9
√

6
65

56

(
120 − 80 · 6 +

160 · 62

3 · 5

)

= −
65a

5632
√

6
(120 − 480 + 384)

= − 65a

5632
√

6
(24)

= −
2535a

5632
√

6

(
23 · 3

)

⇒ <2; 1; 0
∣∣ z

∣∣3; 0; 0> = −
2834

56
√

6
a

4.(g) The integrals for < 2; 1; ±1
∣∣~r

∣∣3; 0; 0 > are easier. These integral depend only on the x and y
components of the ~r operator. Here

<2; 1;±1
∣∣~r

∣∣3; 0; 0> =
∫

R∗
21Y

∗
1;±1

(
~r
)
R30Y00 dV

=
∫

R21R30r
2 dr

∫
Y ∗

1;±1
(
~r
)
Y00 dΩ:

The angular integral is

∫
Y ∗

1;±1
(
~r
)
Y00 dΩ =

∫ (
∓

(
3
8…

)1=2
)

sin µe∓i`
(
~r
)(

1
4…

)1=2

dΩ

= ∓
(

3
8…

)1=2 (
1
4…

)1=2 ∫
sin µe∓i`

(
~r
)
dΩ

= ∓
1
4…

√
3
2

∫ (
~r
)
sin µ (cos ` ∓ i sin`) dΩ

= ∓ 1
4…

√
3
2

∫
(~r sin µ cos ` ∓ i(~r sin µ sin`)) dΩ:

Realizing ~r sin µ cos ` = ~x = x̂i and ~r sin µ sin` = ~y = yĵ, we can write this

∫
Y ∗

1;±1
(
~r
)
Y00 dΩ = ∓

1
4…

√
3
2

∫ (
x̂i ∓ i(ŷj)

)
dΩ;
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i.e., we can look at directional or angular dependence as a function of ~x and ~y only. Generalizing back
into Dirac notation, which is representation free so the constants are irrelevant,

<2; 1;±1
∣∣~r

∣∣3; 0; 0> = <2; 1; ±1
∣∣ x̂i ∓ i(yĵ)

∣∣3; 0; 0>

= <2; 1; ±1
∣∣ x

∣∣3; 0; 0> î ∓ <2; 1;±1
∣∣ iy

∣∣3; 0; 0> ĵ
:

The sign “∓” between the two elements reflects only a phase convention, and we will choose without loss
of generality the “+” sign for our phase so

< 2; 1; ±1
∣∣~r

∣∣3; 0; 0> = <2; 1;±1
∣∣ x

∣∣3; 0; 0> î + <2; 1; ±1
∣∣ iy

∣∣3; 0; 0> ĵ:

4.(h) To show
<2; 1;±1

∣∣ x
∣∣3; 0; 0> = i <2; 1;±1

∣∣ y
∣∣3; 0; 0>

consider the commutator [Lz; x] = ih̄y, and the eigenvalue equation Lz|n; l; m > = mh̄|n; l; m >. In
general

<n′; l′; m′∣∣ [Lz; x]
∣∣n; l;m> = <n′; l′;m′∣∣ ih̄y

∣∣n; l;m>

= ih̄ <n′; l′; m′∣∣ y
∣∣n; l; m> :

This must be the same as <n′; l′;m′
∣∣ [Lz; x]

∣∣n; l;m> when the commutator is evaluated explicitly, i.e.,

ih̄ <n′; l′; m′∣∣ y
∣∣n; l; m> = <n′; l′; m′∣∣ [Lz; x]

∣∣n; l;m>

= <n′; l′; m′∣∣ Lzx − xLz

∣∣n; l;m>

where Lz can operate to the left or right. So

ih̄ <n′; l′; m′∣∣ y
∣∣n; l; m> = <n′; l′; m′∣∣ m′h̄x − xmh̄

∣∣n; l; m>

= <n′; l′; m′∣∣ (m′ − m)h̄x
∣∣n; l; m>

= (m′ − m)h̄ <n′; l′;m′∣∣ x
∣∣n; l;m>

⇒ (m′ − m) <n′; l′; m′∣∣ x
∣∣n; l; m> = i <n′; l′; m′∣∣ y

∣∣n; l; m> :

For the specific states of interest

(1 − 0) <2; 1; 1
∣∣ x

∣∣3; 0; 0> = i <2; 1; 1
∣∣ y

∣∣3; 0; 0>

⇒ <2; 1; 1
∣∣ x

∣∣3; 0; 0> = i <2; 1; 1
∣∣ y

∣∣3; 0; 0>;

and
(−1 − 0) <2; 1;−1

∣∣ x
∣∣3; 0; 0> = i <2; 1;−1

∣∣ y
∣∣3; 0; 0>

⇒ − <2; 1;−1
∣∣ x

∣∣3; 0; 0> = i <2; 1;−1
∣∣ y

∣∣3; 0; 0>;

so

± <2; 1;±1
∣∣ x

∣∣3; 0; 0> = i <2; 1;±1
∣∣ y

∣∣3; 0; 0> :
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There are four matrix elements here. If we evaluate the two integrals in x though, we have the two inte-
grals in y from the above relation. Also, because of the symmetry in `, we can do both integrals in x
at the same time, so in effect, we have only one integral to evaluate to get all four matrix elements.

4.(i) To evaluate the integrals in x, remember x = r sin µ cos `, and

± <2; 1; ±1
∣∣ x

∣∣3; 0; 0> = ± <2; 1;±1
∣∣ r sin µ cos `

∣∣3; 0; 0> so

± <2; 1;±1
∣∣ x

∣∣3; 0; 0> =
∫ ∞

−∞
R∗

21Y
∗
1;±1 r sin µ cos `R30Y00 r2Ω

=
∫ ∞

0
R21R30r

3 dr

∫
Y ∗

1;±1 sin µ cos ` Y00 dΩ

=
∫ ∞

0

1√
24

a−3=2 r

a
e−r=2a 2√

27
a−3=2

(
1 −

2r

3a
+

2
27

r2

a2

)
e−r=3ar3 dr

∫
∓

√
3
8…

sin µe∓i`( sin µ cos ` )

√
1
4…

dΩ

= ∓ 1√
24

2√
27

1
a4

√
3
8…

√
1
4…

∫ ∞

0
r4e−5r=6a

(
1 − 2r

3a
+

2
27

r2

a2

)
dr

∫ …

0
sin3 µ dµ

∫ 2…

0
cos `e∓i` d`; (1)

where the third factor of sin µ is from dΩ = sin µ dµ d`. The constants are

∓ 1√
24

2√
27

1
a4

√
3
8…

√
1
4…

= ∓ 1√
23 · 3

2√
33

1
a4

1
4…

√
3√
2

= ∓ 2
√

3√
24 · 34

1
4…a4 = ∓ 1

24…a4
√

3
:

The azimuthal integral is

∫ 2…

0
cos `e∓i` d` =

∫ 2…

0
cos `(cos ` ∓ i sin`) d` =

∫ 2…

0
cos2 `d` ∓ i

∫ 2…

0
cos ` sin`) d`

=
[
1
2
` +

1
4

sin(2`)
]2…

0
∓ i

[
1
2

sin2 `

]2…

0
=

[
1
2
2… − 0 + 0 − 0

]
∓ i [0 − 0] = …:

The polar integral is
∫ …

0
sin3 µ dµ = −

1
3

[
(cos µ)(sin2 µ + 2)

]…

0
= −

1
3

[(−1)(0 + 2) − (1)(0 + 2)] = −
1
3

[−2 − 2] =
4
3
:

The radial integral becomes three integrals
∫ ∞

0
r4e−5r=6a

(
1 − 2r

3a
+

2
27

r2

a2

)
dr =

∫ ∞

0
r4e−5r=6a dr − 2

3a

∫ ∞

0
r5e−5r=6a dr +

2
27a2

∫ ∞

0
r6e−5r=6a dr

and we have already evaluated these integrals Using the results of part (f),

∫ ∞

0
r4e−5r=6a dr = 24

65a5

55 ;

2
3a

∫ ∞

0
r5e−5r=6a dr = 80

66a5

56 ;

2
27a2

∫ ∞

0
r6e−5r=6a dr =

160
3

67a5

57 :
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Compiling these six results, equation (1) becomes

± <2; 1; ±1
∣∣ x

∣∣3; 0; 0> = ∓
1

24…a4
√

3
…

4
3

(
24

65a5

55 − 80
66a5

56 +
160
3

67a5

57

)

= ∓ 1
18a4

√
3

65a5

56

(
24 · 5 − 80 · 6 +

160
3

62

5

)

= ∓
a

2 · 32
√

3
65

56 (120 − 480 + 384)

= ∓
a

2 · 32
√

3
25 · 35
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]
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and

< 2; 1;±1
∣∣ y

∣∣3; 0; 0> = ±i

[
−

27 · 34

56
√

3

]
a:

4.(j) According to Fermi’s Golden Rule Number 2, the electric dipole transition rates are proportional
to the squares of the matrix elements. We have all three matrix elements so we can calculate the relative
rates of decays for the three paths. From part f, we have

∣∣ <2; 1; 0
∣∣~r

∣∣3; 0; 0>
∣∣2 =

[
−

28 · 34

56
√

6
a

]2

=
216 · 38

512 · 6
a2 =

215 · 37

512 a2;

and from parts g and i, we have

< 2; 1; ±1
∣∣~r

∣∣3; 0; 0>=< 2; 1;±1
∣∣ x

∣∣3; 0; 0> ±i < 2; 1; ±1
∣∣y

∣∣3; 0; 0>;

so the total transition rate is the sum of the x and y induced rates, and is twice as large as the individual
x and y matrix elements squared:

∣∣ <2; 1; ±1
∣∣~r

∣∣3; 0; 0>
∣∣2 = 2

[
∓

27 · 34

56
√

3
a

]2

=
215 · 37

512 a2:

Consequently, we conclude that the three decay rates are equal:

∣∣ <2; 1; 0
∣∣~r

∣∣3; 0; 0>
∣∣2 =

∣∣ <2; 1; 1
∣∣~r

∣∣3; 0; 0>
∣∣2 =

∣∣ <2; 1; −1
∣∣~r

∣∣3; 0; 0>
∣∣2:
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4.(k) The spontaneous emission rates are given by

A =
!3

∣∣ q <ˆb

∣∣~r
∣∣ˆa >

∣∣2

3…†0h̄c3 where ! =
Eb − Ea

h̄
:

These are given by

A3;0;0→2;1;0 =

[
13:6=22 − 13:6=32

]3 1
h̄3 e2

3…†0h̄c3
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(1:440 eV · nm)

(hc)3
64…4

3h
[1:89]3 eV3 (0:294)(0:0529 nm)2

=
(1:440 eV · nm)

(1:240 × 103 eV · nm)3
2078:06

h
[6:75] (0:294)(0:00280) eV3nm2

=
(1:440 eV · nm)

1:907 × 109 eV3 · nm3

11:547
h

eV3nm2

=
8:72−9 eV

4:136 × 10−15eV · s
= 2:11 × 106 s−1

⇒ ¿3;0;0→2;1;0 =
1
A

= 4:75 × 10−7 s:

The spontaneous emission rates for < 2; 1; 1
∣∣~r

∣∣3; 0; 0 > and < 2; 1; −1
∣∣~r

∣∣3; 0; 0 > are calculated similarly,
and since the matrix elements are identical in value, we find:

A3;0;0→2;1;1 = A3;0;0→2;1;−1 = A3;0;0→2;1;0 = 2:11 × 106 s−1:

So the rate via each path is the same:

¿3;0;0→2;1;1 =
1
A

= 4:75 × 10−7 s

¿3;0;0→2;1;−1 =
1
A

= 4:75 × 10−7 s

¿3;0;0→2;1;0 =
1
A

= 4:75 × 10−7 s;
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and the total decay rate is set by

AT = 3(2:11 × 106 s−1) = 6:33 × 106 s−1;

which gives us the lifetime

¿T =
1

AT
= 1:58 × 10−7 s:
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Nuclear Physics



Fermi’s Theory 
of Beta Decay





The Fermi Selection Rule for 

Beta Decay

(`fer·me si`lek·shen `rül)

There is no change in the total 

angular momentum or the parity 

of the nucleus



Requirements - I

2.) Single beta decay must be forbidden (m (A,Z) < m (A,Z+1))
or at least strongly suppressed (large change in angular momentum)

1.) m(A,Z) > m(A,Z+2)
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Physical Motivation
Predictions of the island of SHE • nuclei beyond Fm exist only 

  due to shell effects

• predictions of highly stabilized 
  SHE (Ttheo ~ min -y)

• failure to synthesize SHE 
  by reactions of the type 
  Pb + Pb (U + U) 

1) Production of SHE via
    “hot” and “cold” fusion
2) Systematic study of nuclear
    structure of transfermium 
    isotopes

SHE location – opened
Z = 114, 120, 126

N = 172, 184

fundamentals of spin-orbit
force

↓
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E. Fermi’s publications on the Weak Interaction

E. Fermi, “Tentative Theory of Beta Rays” 
Letter Submitted to Nature (1933)REJECTED

Published in Nuovo Cimento and Zeitschrift fur Physik



Dear Radioactive Ladies and Gentlemen: Zurich, December 4, 1930
         I beg you to receive graciously the bearer of this letter who will report to you in detail how I have hit on a desperate way to escape
from the problems of the "wrong" statistics of the N and Li6 nuclei and of the continuous beta spectrum in order to save the "even-odd” rule of
statistics and the law of conservation of energy. Namely the possibility that electrically neutral particles, which I would like to call neutrons might
exist inside nuclei; these would have spin 1/2, would obey the exclusion principle, and would in addition differ from photons through the fact that
they would not travel at the speed of light. The mass of the neutron ought to be about the same order of magnitude as the electron mass, and in any
case could not be greater than 0.01 proton masses. The continuous beta spectrum would then become understandable by assuming that in beta
decay a neutron is always emitted along with the electron, in such a way that the sum of the energies of the neutron and electron is a constant.
Now, the question is, what forces act on the neutron? The most likely model for the neutron seems to me, on wave mechanical grounds, to be
the assumption that the motionless neutron is a magnetic dipole with a certain magnetic moment µ (the bearer of this letter can supply details).
The experiments demand that the ionizing power of such a neutron cannot exceed that of a gamma ray, and therefore µ probably cannot be greater
than e (10-13cm). [e is the charge of the electron].
       At the moment I do not dare to publish anything about this idea, so I first turn trustingly to you, dear radioactive friends, with the question:
how could such a neutron be experimentally identified if it possessed about the same penetrating power as a gamma ray or perhaps 10 times
greater penetrating power?
       I admit that my way out may look rather improbable at first since if the neutron existed it would have been seen long ago. But nothing
ventured, nothing gained.  The gravity of the situation with the continuous beta spectrum was illuminated by a remark by my distinguished
predecessor in office, Mr. DeBye, who recently said to me in Brussels, "Oh, that’s a problem like the new taxes; one had best not think about
it at all." So one ought to discuss seriously any way that may lead to salvation. Well, dear radioactive friends, weigh it and pass sentence!
Unfortunately, I cannot appear personally in Tubingen, for I cannot get away from Zurich on account of a ball, which is held.here on the night
of December 6-7
      With best regards to you and to Mr. Baek,

       Your most obedient servant,
           W. Pauli

Pauli’s “Neutrino”



Fermi’s
“Golden Rule #2”

Fermi’s notes on QM



The fundamental
process

•In analogy with the theory of radiation Fermi
applied the creation and distruction operators 
of Dirac-Jordan-Klein-Wigner and Dirac’s 
relativisitic theory for spin 1/2 particles

•Of the possibilities in Dirac invariant interactions
(S, V, A, T, P) Fermi chose a vector interaction for the
nucleon current and the lepton current.

     H(x) = g [p+(x) γογµn(x)]  [e+(x) γoγµν(x)]



 ρ(Ε) ∝ pE(E-Eo)2 dE

Fermi’s Lectures on Nuclear Physics











Fermi’s paper on beta decay:
• Established a predictive realization of Pauli’s proposal
• Established the connection between quantum
  field theory and particles.
• Predicted the statistical shape of the beta spectrum and the
  consequences of finite neutrino mass.
• Anticipated the most likely experimental distortions to
  beta spectrum.
• Discussed the dominate electromagnetic corrections to the
   beta decay spectrum.
• Established a theory that remains the (essentially) correct
  description of beta decay.

Fermi’s theory remains the “correct” description of beta decay except:
• As pointed out by Gamow and Teller in 1936 another component
  of the Hamiltonian is required to account for decays like 6He
• Neutrons and protons are not elementary particle and there are
  forbidden contributions (induced terms) due to their structure



Dear Enrico, October 4, 1952
    We thought that you might be interested in the latest version of our experiment to detect the free neutrino, hence this letter.
as you recall, we planned to use a nuclear explosion for the source because of the background difficulties.  Only last week it
occurred to us that background problems could be reduced to the point where a Hanford pile would suffice by counting only 
delayed coincidences between the positron pulse and neutron capture pulse.  You will remember that the reaction we plan to 
use is p + ν -> n +β+.  Boron loading a liquid scintillator makes it possible to adjust the mean time T between these two events
and we are considering T ~ 10 µsec.  Our detector is a 10 cubic foot fluor filled cylinder surrounded by about 90 5819’s
operating as two large tubes of 45 5819’s each.  These two banks of ganged tubes isotropically distributed about the curved 
cylindrical wall are in coincidence to cut tube noise.  The inner wall of the chamber will be coated with a diffuse reflector and
in all we expect the system to be energy sensitive, and not particularly sensitive to the position of the event in the fluor.  
This energy sensitivity will be used to discriminate further against background.  Cosmic ray anti-coincidence will be used in
addition to mercury of low background lead for shielding against natural radioactivity.  We plan to immerse the entire detector
in a large borax water solution for further necessary reduction of pile background below that provided by the Hanford shield.
     Fortunately, the fast reactor here at Los Alamos provides the same leakage flux as Hanford so that we can check our gear
before going to Hanford.  Further, if we allow enough fast neutrons from the fast reactor to leak into our detector we can simulate
double pulses because of the proton recoil pulse followed by the neutron capture which occurs in this case.  We expect a count-
ting rate at Hanford in our detector about six feet from the pile face of ~1/min with a background somewhat lower than this.
     As you can imagine, we are quite excited about the whole business, have canceled preparations for use of a bomb, and we are
working like mad to carry out the ideas sketched above.  Because of the enormous simplification in the experiment.  We have 
already made rapid progress with the electronic gear and associated equipment and expect that tin the next few months we shall 
be at Hanford reaching for the slippery particle.
     We would of course appreciate any comments you might care to make.
Sincerely, 
Fred Reines, Clyde Cowan

Dear Fred, October 8, 1952
    Thank you for your letter of October 4th by Clyde Cowan and yourself.  I was very much interested in you new plan for the
detection of the neutrino.  Certainly your new method should be much simpler to carry out and have the great advantage that the
measurement can be repeated any number of times.  I shall be very interested seeing how your 10 cubic foot scintillaton counter
is going to work, but I do not know of any reason why it should not.
Good Luck.
Sincerely yours,
Enrico Fermi



Direct Detection 
of the Neutrino



Cutaway view of the KamLAND detector



Exterior view of KamLAND sphere



Interior of KamLAND sphere October 2000



KamLAND Detector Ready for Fill May 2001



“I shall be very interested seeing how your 40,624 cubic foot scintillaton 
counter is going to work, but I do not know of any reason why it should not.”



The Neutrino: From Poltergeist to Particle
Nobel Lecture, December 8, 1995
Frederick Reines

The Second World War had a great influence on the lives and careers of very many of us for whom those 
were formative years. I was involved during, and then subsequent to, the war in the testing of nuclear 
bombs, and several of us wondered whether this man-made star could be used to advance our
knowledge of physics. For one thing this unusual object certainly had lots of fissions in it, and hence, was a 
very intense neutrino source. I mulled this over somewhat but took no action.

Then in 1951, following the tests at Eniwetok Atoll in the Pacific, I decided I really would like to do some 
fundamental physics. Accordingly, I approached my boss, Los Alamos Theoretical Division Leader, J. Carson 
Mark, and asked him for a leave in residence so that I could ponder. He agreed, and I moved to a stark 
empty office, staring at a blank pad for several months searching for a meaningful question worthy of a 
life’s work. It was a very difficult time. The months passed and all I could dredge up out of the 
subconscious was the possible utility of a bomb for the direct detection of neutrinos. Afterall, such a 
device produced an extraordinarily intense pulse of neutrinos and thus the signals produced by neutrinos 
might be distinguishable from background. Some handwaving and rough calculations led me to conclude that
the bomb was the best source. All that was needed was a detector measuring a cubic meter or so. I 
thought, well, I must check this with a real expert.

It happened during the summer of 1951 that Enrico Fermi was at Los Alamos, and so I went down the hall, 
knocked timidly on the door and said, “I’d like to talk to you a few minutes about the possibility of neutrino 
detection.”  He was very pleasant, and said, “Well, tell me what’s on your mind?”  I said, “First off as to 
the source, I think that the bomb is best.” After a moment’s thought he said, “Yes, the bomb is the best 
source.” So far, so good! Then I said, “But one needs a detector which is so big. I don’t know how to make 
such a detector.” He thought about it some and said he didn’t either. Coming from the Master that was 
very crushing. I put it on the back burner until a chance conversation with Clyde Cowan. We were on our 
way to Princeton to talk with Lyman Spitzer about controlled fusion when the airplane was grounded in 
Kansas City because of engine trouble. At loose ends we wandered around the place, and started to 
discuss what to do that’s interesting in physics. “Let’s do a real challenging problem,” I said. He said,
“Let’s work on positronium.” I said, “No, positronium is a very good thing but Martin Deutsch has that 
sewed-up. So let’s not work on positronium.” Then I said, “Clyde let’s work on the neutrino.” His immediate 



response was, “GREAT IDEA.” He knew as little about the neutrino as I did but he was a good 
experimentalist with a sense of derring do. So we shook hands and got off to working on neutrinos.

Need for Direct Detection

Before continuing with this narrative it is perhaps appropriate to recall the evidence for the existence of 
the neutrino at the time Clyde and I started on our quest. The neutrino of Wolfgang Pauli[l] was postulated 
in order to account for an apparent loss of energy-momentum in the process of nuclear beta decay. In his 
famous 1930 letter to the Tübingen congress, he stated: “I admit that my expedient may seem rather 
improbable from the first, because if neutrons* existed they would have been discovered long since.
*When the neutron was discovered by Chadwick, Fermi renamed Pauli’s particle the “neutrino”.
Nevertheless, nothing ventured nothing gained... We should therefore be seriously discussing every path to 
salvation.”

All the evidence up to 1951 was obtained “at the scene of the crime” so to speak since the neutrino once 
produced was not observed to interact further. No less an authority than Niels Bohr pointed out in 1930[2] 
that no evidence “either empirical or theoretical” existed that supported the conservation of energy in 
this case. He was, in fact, willing to entertain the possibility that energy conservation must be abandoned 
in the nuclear realm. However attractive the neutrino was as an explanation for beta decay, the proof of 
its existence had to be derived from an observation at a location other than that at which the decay 
process occurred - the neutrino had to be observed in its free state to interact with matter at a remote 
point.
It must be recognized, however, that, independently of the observation of a free neutrino interaction with 
matter, the theory was so attractive in its explanation of beta decay that belief in the neutrino as a “real” 
entity was general. Despite this widespread belief, the free neutrino’s apparent undetectability led it to be 
described as “elusive, a poltergeist.”

So why did we want to detect the free neutrino? Because everybody said, you couldn’t do it. Not very 
sensible, but we were attracted by the challenge. After all, we had a bomb which constituted an excellent 
intense neutrino source. So, maybe we had an edge on others. Well, once again being brash, but 
nevertheless having a certain respect for certain authorities, I commented in this vein to Fermi, who 
agreed. A formal way to make some of these comments is to say that, if you demonstrate the existence 
of the neutrino in the free state, i.e. by an observation at a remote location, you extend the range of 



applicability of these fundamental conservation laws to the nuclear realm. On the other hand, if you didn’t 
see this particle in the predicted range then you have a very real problem.

As Bohr is reputed to have said, “A deep question is one where either a yes or no answer is interesting.” 
So I guess this question of the existence of the “free” neutrino might be construed to be deep. Alright, 
what about the problem of detection? We fumbled around a great deal before we got to it. Finally, we 
chose to look for the reaction Te + p + n + e’. If the free neutrino exists, this inverse beta decay reaction 
has to be there, as Hans Bethe and Rudolf Peierls recognized, and as I’m sure did Fermi, but they had no 
occasion to write it down in the early days. Further, it was not known at the time whether V, and V, were 
different. We chose to consider this reaction because if you believe in what we today call “crossing 
symmetry” and use the measured value of the neutron half life then you know what the cross section has
to be - a nice clean result. (In fact, as we learned some years later from Lee and Yang, the cross section is 
a factor of two greater because of parity nonconservation and the handedness of the neutrino.) Well, we 
set about to assess the problem of neutrino detection. How big a detector is required? How many counts 
do we expect? What features of the interaction do we use for signals? Bethe and Peierls in 1934 [3], 
almost immediately after the Fermi paper on beta decay[4], estimated that if you are in the few MeV 
range the cross section with which you have to deal would be ~ l0-44 cm2. To appreciate how minuscule 
this interaction is we note that the mean free path is ~ 1000 light years of liquid hydrogen. Pauli put his 
concern succinctly during a visit to Caltech when he remarked: “I have done a terrible thing. I have 
postulated a particle that cannot be detected.” No wonder that Bethe and Peierls concluded in 1934 
“there is no practically possible way of observing the neutrino.”  I confronted Bethe with this 
pronouncement some 20 years later and with his characteristic good humor he said, “Well, you shouldn’t 
believe everything you read in the papers.”

Reflecting on the trail that took us from bomb to reactor, it is evident that it was our persistence which 
led us from a virtually impossible experiment to one that showed considerable promise. The stage had been 
set for the detection of neutrinos by the discovery of fission and organic scintillators - the
most important barrier was the generally held belief that the neutrino was undetectable.

Absorption Test

The only known particles, other than ie produced by the fission process, were discriminated against by 
means of a gamma-ray and neutron shield. When a bulk shield measured to attenuate gamma rays and 



neutrons by at least an order of magnitude was added, the signal was observed to remain constant; that is 
the reactor-associated signal was 1.74 ± O.12/hour with, and 1.69 ± 0.17/hour without the shield.

Telegram to Pauli

The tests were completed and we were convinced. It was a glorious feeling to have participated so 
intimately in learning a new thing, and in June of 1956 we thought it was time to tell the man who had 
started it all when, as a young fellow, he wrote his famous letter in which he postulated the neutrino,
saying something to the effect that he couldn’t come to a meeting and tell them about it in person 
because he had to go out to a dance! The message was forwarded to him at CERN, where he interrupted
the meeting he was attending to read the telegram to the conferees and then made some impromptu 
remarks regarding the discovery. That message reads, “We are happy to inform you that we have 
definitely detected neutrinos from fission fragments by observing inverse beta decay of protons. 
Observed cross section agrees well with expected six times ten to minus forty four square centimeters.” 
We learned later that Pauli and some friends consumed a case of champagne in celebration! Many years 
later (~ 1986) C.P. Enz, a student of Pauli’s, sent us a copy of a night letter Pauli wrote us in 1956, but 
which never arrived. It says, “Thanks for the message. Everything comes to him who knows how to wait. 
Pauli"
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Neutrino Detection
Neutrinos are elusive. A low energy neutrino has some chance of 
passing through 1000 light-years of lead without interacting!

Cosmic Gall
-John Updike-

Neutrinos, they are very small.
They have no charge and have no mass
And do not interact at all.
The earth is just a silly ball
To them, through which they simply pass,
Like dustmaids through a drafty hall
Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,
And scorning barriers of class,
Infiltrate you and me! Like tall
And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal
And pierce the lover and his lass
From underneath the bed-you call
It wonderful; I call it crass.

The New Yorker Magazine, Inc. , 1960

YOU are now being invaded by about 1014 neutrinos each second!
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Presentation based on “Introduction to Elementary Particles”
by David Griffiths

WEAK INTERACTION (1)
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Let’s start with...
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 DECAY OF THE MUON

As before :

The amplitude :
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 DECAY OF THE MUON
In the muon rest frame :

Let :

Plug in :
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 DECAY OF THE MUON

The decay rate given by Golden Rule* :

where :

*  a lot of work, since this is a three body decay
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 DECAY OF THE MUON
In Fermi’s original theory of beta decay there was no W;
the interaction was a direct four-particle coupling.

Using the observed muon lifetime and mass :

and :

“Weak fine structure constant” :

Larger than electromagnetic fine structure constant
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 DECAY OF THE NEUTRON

( the same as in previous case )
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 DECAY OF THE NEUTRON
In the rest frame of the neutron :

We can’t ignore the mass of the electron.

As before :

where :
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 DECAY OF THE NEUTRON
The       integral yields :

and :

Setting the z-axis along       (which is fixed, for the purposes of the       integral), we have :

and :
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 DECAY OF THE NEUTRON

But the proton and neutron
are not point particles.

Replacement in the vertex factor :

cV is the correction to the vector “weak charge”
cA is the correction to the axial vector “weak charge”
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 DECAY OF THE NEUTRON

Another correction, the quark vertex carries a factor of

is the Cabibbo angle.

Lifetime :
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 DECAY OF THE PION

    The decay of the pion is really
a scattering event in which the
incident quarks happen to be
bound together.
     We do not know how the W
couples to the pion. Use the “form
factor”.

“form factor”
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 DECAY OF THE PION
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 DECAY OF THE PION

Experimental value :

The decay rate :

The following ratio could be computed without knowing the decay constant :



Peter Steinberg

Relativistic Version
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“Amplitiude”

Electron (easy) Proton (hard & extended!)

“Rosenbluth Formula”

“Fermi’s Golden
Rule”



V-A: Universal Theory of Weak Interaction

The story of the discovery of the Chiral V-A interaction in the classic weak processes of

beta decay, muon capture by nuclei, and muon decay has been told many times. Sudarshan

was a student working under the supervision of Robert Marshak. Marshak suggested in

early 1956 that he should study weak interactions. Sudarshan studied every paper on weak

interactions beginning with Sargent, Fermi, Yukawa, Gamow and Teller, Konopinski, Wu,

and a multitude of others. He had also read the paper by Tiomno and Wheeler on the

possibility of a Universal Fermi Interaction. Fermi had postulated a scalar, formed out of

four Fermi fields, for the form of the weak interactions, in analogy with electromagnetic

interactions. Soon it was found that the form of the interaction had to be generalized to

include spin-dependent interactions as pointed out by Gamow and Teller. However, when

special relativity had to be taken into account, the most general form for the interaction

Lagrangian turned out to be

Li =
5∑

i=1

gi

{
ψ̄1Oiψ2

} {
ψ̄3Oiψ4

}
(1)

where the operator Oi=( 1, γµ, σµν , iγ5γµ, or γ5 ), and ψi are the four spinor fields involved

in the decay. These covariant forms were called scalar (S), vector (V), tensor (T), axial

vector (A), and pseudoscalar (P), respectively. In the non-relativistic limit, S and V reduce

to the Fermi interaction, while T and A reduce to Gamow-Teller.

The consensus at that time, based on many experiments, was that the beta decay weak

interaction was scalar and tensor. After the discovery of parity violation in 1956, papers on

this subject appeared in torrents. Having studied all of them, by the end of 1956, Sudarshan

was convinced that if there was a Universal Fermi Interaction it had to include the axial

vector interaction since the charged pion decay may be viewed as if it were beta decay of a

“nucleus with zero atomic weight”. He then systematically studied all the work up to that

time, both theoretical and experimental, with this criterion in mind.

By December 1956 - January 1957, Sudarshan had discovered that the results of angular

correlation experiments on “classical” (non parity violating) beta decays were internally

inconsistent! The electron-neutrino angular correlation in the neutron and in the Ne19 decays

were indicative of S, T or V, A. But the available data on He6 showed it to be tensor T.

On this basis, the preferred combination was S, T. But the Ar35 decay, which is dominantly



2

of the Fermi type, showed that it is V. Not all these could be true at the same time. In

muon decay, since the neutrino and antineutrino were taken to be massless and chiral, the

only interaction was vector or axial vector, or a combination of both [in the charge retention

order (µe)(νν)].

At the time of the Rochester conference in spring 1957, Sudarshan had essentially all the

arguments in place for Chiral V-A interaction, but there were four experiments which stood

in the way. He wanted to present it at the Rochester High Energy Conference, but it was

ruled out since he was still only a graduate student! Marshak himself was very preoccupied

with the nucleon-nucleon strong interactions. He had chosen to present a phenomenolog-

ical nucleon-nucleon potential at the conference. P.T. Matthews, a visiting professor at

Rochester, was entrusted with reporting the V-A theory in a few lines, but he forgot to do

so. There was much inconclusive discussion between experts about the form of the weak in-

teractions which Sudarshan could have resolved had he been given a few minutes to present

his theory.

Marshak was going to be at the RAND Corporation in Los Angeles and offered Sudarshan

and Bryan (another student of his) one-month summer salary if they could be in Los Angeles.

As an alien, Sudarshan could not enter RAND, so it was arranged that they meet outside

off and on. At that time Gell-Mann was also a consultant to RAND. Marshak told him

briefly about their work on weak interactions and Gell-Mann was appreciative of it. So, ten

days later Marshak had arranged lunch at a nearby restaurant. The lunch group included

Marshak, Gell-Mann, Bryan, Leona Marshall, Felix Boehm, A.H. Wapstra, Berthold Stech,

and Sudarshan. Sudarshan was asked to give a presentation which he did in full detail.

(This was the only time he was invited to give a talk on V-A!) He made the observation that

the data was internally inconsistent. He also singled out the experiments which were most

likely to be mistaken. He suggested that the weak decay interaction was of the universal

form V-A with maximal parity violation, in which every field was multiplied by the chiral

projection operator. Incidentally, if this is so, both the charge exchange and the charge

retention ordering give the same unique interaction. As presented, Sudarshan’s work was a

critical examination of all the existing data on all weak interactions, and it showed that the

only possibility was Chiral V-A. Gell-Mann was enthusiastic about Sudarshan and Marshak’s

discovery.

Marshak asked Sudarshan to write up the work, which he did, and gave it to Marshak
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that weekend. Marshak decided to present this fundamental discovery at the Padua-Venice

conference on Mesons and Newly Discovered Particles in September 1957 [1], rather than

to have it published immediately (which probably cost him and Sudarshan a Nobel prize).

Later, Marshak decided that a sequel to the presentation at the Padua-Venice conference

(which, incidentally, was published two years later) should be published in the Physical

Review [2].

In the meantime, Feynman and Gell-Mann published a paper in the Physical Review as-

serting the V-A structure of the weak interactions, merely thanking Sudarshan for “impor-

tant discussions”. Their paper, which most people quote in precedence over the Sudarshan-

Marshak paper, does not contain any analysis of the data, including those of the experiments

that Sudarshan and Marshak had singled out to be most likely in error. These experiments

were eventually redone and gave the results predicted by Sudarshan and Marshak.

Many fables and some actual accounts about this have been presented by various people.

Notably, Feynman made a public statement in 1963 [3]: “The V-A theory that was discovered

by Sudarshan and Marshak, publicized by Feynman and Gell-Mann —”. Marshak has also

spoken and written about this history ([4–8]).

Weak interaction theory (V-A) could be extended to the leptonic decays of baryons and

mesons. The question arises as to the isotopic spin transformation properties of these. THe

simplest is to assume that the interaction current in leptonic decays transforms as I=1
2
.

This leads to sum rules [9]. The non-leptonic decays of hyperons have also been studied and

shown to involve near-maximal parity violation and consequent baryon polarization [10, 11].

In quantum electrodynamics the conservation of the electric current led to the Ward-

Takahashi identities. This was generalized to cases where the divergence of the interaction

current does not vanish but is a multiple of the pion field, resulting in generalized Ward-

Takahashi identities [12].

[1] “The Nature of the Four-Fermion Interaction”, with R. E. Marshak; N. Zanichelli, Proc. of

the Conference on Mesons and Newly-Discovered Particles, Padua-Venice, Sept. 1957; Bologna

(1958); reprinted in “Development of the Theory of Weak Interactions”, P. K. Kabir (ed.),

Gordon and Breach, New York (1964). Also in “A Gift of Prophecy”, E. C. G. Sudarshan
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(ed.) World Scientific, Singapore (1994), pp. 508-515.

[2] “Chirality Invariance and the Universal Fermi Interaction”; with R. E. Marshak, Phys. Rev.

109 1860-1862 (1958).

[3] See page 477 and refs. 40 and 29 in “The beat of a different drum: The life and science of

Richard Feynman” by J. Mehra Clarendon Press Oxford (1994).

[4] “ Origin of the Universal V-A Theory”; with R. E. Marshak. In proceedings “50 Years of Weak

Interactions”, Wingspread Conference, University of Wisconsin, Madison, Wisconsin (1984),

pp. 1-15; and in AIP Conference Proceedings 300 “Discovery of Weak Neutral Currents: the

Weak Interaction Before and After”, A. K. Mann and D. B. Cline (eds.), AIP, New York

(1994), pp. 110-124.

[5] “Conserved Currents in Weak Interactions”; with R. E. Marshak. Frontiers of Physics (Proc. of

The Landau Memorial Conference, Tel Aviv, Israel, 6-10 June 1988), E. Gotsman, Y. Ne’eman

and A. Voronel (eds.), Pergamon Press, Oxford (1990), pp. 169-182.

[6] “Chirality Invariance and the Universal V-A Theory of Weak Interactions”; with R. E. Mar-

shak. in Frontier Physics: Essays in Honour of Jayme Tiomno, World Scientific Publishing
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[7] “The pain and joy of a major scientific discovery”, R. E. Marshak, Current Science 63, 60
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[8] “The pain and joy of a major scientific discovery”, R. E. Marshak, in “A Gift of Prophecy”,
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[9] “Interaction Current in Strangeness-Violating Decays”, with S. Okubo, R. E. Marshak, W. B.

Teutsch and S. Weinberg, Phys. Rev. 112, 665-668 (1958); reprinted in “The Development of

the Theory of Weak Interactions”, P. K. Kabir (ed.), Gordon and Breach, New York (1964).

[10] “V-A Theory and the Decay of the Λ Hyperon”; with S. Okubo and R. E. Marshak Phys.
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